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Influence of buoyancy on thermocapillary oscillations in a two-layer system
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The influence of buoyancy on thermocapillary oscillations was investigated. Nonlinear simulations of stand-
ing Marangoni waves in a real two-layer system of fluids were performed. Both the subcritical and supercritical
oscillatory regimes were studied. It was found that buoyancy leads to the regularization and suppression of
oscillations. The conditions for observation of different types of instability are discussed.
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[. INTRODUCTION Fig. 1). The system is bounded from above and from below
by two isothermic rigid plates kept at different constant tem-

The thermocapillary effect often plays the dominant roleperaturegthe total temperature drop ®. It is assumed that
in the dynamics and heat and mass transfer in systems withe interfacial tensiorr decreases linearly with increasing
an interface, especially in the case of thin layers and undeaemperatureo=oy— aT, wherea>0. The dependence of
microgravity conditions. It is the origin of specific surface- the interfacial tension on the temperature can lead to the
tension-driven(Marangon) instabilities[1]. onset of the Marangoni instability.

It is known that the stability problem for the mechanical |t js known that there are two kinds of Marangoni insta-
equilibrium state in a system with an interface is not self-yjjity [1,2]. The first type of instability, which occurs in rela-
adjoint (see, e.g.[2]); thus an oscillatory instability is pos- yely thick layers, develops without a significant deforma-
sible. The Marangoni oscillatory instability in a two-layer tion of the interface. Another type of instability, which is

system was first discovered by Sternling and Scri@hin  hserveq in very thin layers, is caused by the interfacial de-
the case of two semi-infinite layers. This case actually corre;

e . ; formation.
sponds to the limit of high wave numbétsA detailed analy- e . . - N
sis of the appearance of oscillatory Marangoni instabilities in The Sternling-Scriven oscillatory instability studied in the

the limit Mk?>1, whereM is the Marangoni number, was p.rese”t paper belongs FO the first t.ype of ingtability. We Wi”
carried out in[4], ’ disregard the deformation of the interface in our analysis.
In reality. thé critical wave number of the instability is The conditions when the deformational instability can be ig-

usually of the order of unity. In that case, the criteria for thenored are considered in Sec. IIl.

appearance of the oscillatory instability can be essentially All variables referring to the top layer are marked by the
Changed in Comparison with the limit of h|gh wave numbers|ndex 1, and the Var|ab|es refer“ng to the bOttom |a.yer are
[5-7]. marked by the index 2. Let us use the following notation:

An example of a physical system where two-layer oscil-
lations have been predicted is the systewctane—methanol
(se€[8]). A weakly nonlinear bifurcation analysi§] reveals p=pilps, v=vilvy, 7m=n1ln, k=K1lky,

a subcritical instability of the mechanical equilibrium state

with respect to standing waves. In the case of a subcritical
instability, a weakly nonlinear analysis cannot give any pre-
diction concerning finite-amplitude motion.

In the present paper the influence of buoyancy on ther-
mocapillary oscillations is considered. It is shown that the w z
oscillations can be observed only under microgravity condi-
tions. Nonlinear simulations of spatially periodic standing
waves in then-octane—methanol system are performed. Both
the subcritical and supercritical oscillatory regimes are inves- a, @
tigated.

The paper is organized as follows. In Sec. I, the math-
ematical formulation of the problem is presented. The linear
stability of the system is analyzed in Sec. lll. Nonlinear
simulations of the finite-amplitude convective regimes are
given in Sec. IV. Section V contains some concluding re-
marks.

X=x1lx2, B=p1/B2, a=ayla;.

Il. FORMULATION OF THE PROBLEM 4

We consider a system of two horizontal layers of immis-  FIG. 1. Geometrical configuration of the two-layer system and
cible viscous fluids with different physical propertiésee  coordinate axes.
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Herepm, Ym» %m» Km» Xm» Bm, anda,, are, respectively,

the density, kinematic and dynamic viscosities, heat conduc-

tivity, thermal diffusivity, thermal expansion coefficient, and
thickness of themth layer (m=1,2). As the units of length,
time, velocity, pressure, and temperature we choasgge
ajlvy, vilay, pyvilas, and#, respectively.
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- z—1
v(l)=vg=0, p p2 0, TO 1+Ka,
0 kz—1 8
2 Sl+Ka (8)

The complete nonlinear equations of convection for bo”borrespondlng to mechanical equilibrium.

fluids have the following form2]:

— eV Pm+ CrV 20 m+ b Gr T,

T e Ay,
7+Um'VTm_ﬁV Tm, (1)
V-5,=0.

Here, U m=(vmx,Umy,Um7y) is the velocity vector,T, is
the temperature, ang, is the pressure in theth fluid; b,
=C1=d1—e1—1; Cz—l/V dz—llx, ez—llp, Gr
=gB,0a3/v? is the Grashof number and Pw,/x; is the
Prandtl number for the liquid in layer 1. The conditions on
the isothermic rigid horizontal boundaries are

v,=0, T,=0, forz=1,

)

v,=0, T,=s for z=-—a,

)

wheres=1 corresponds to the case of heating from below

ands=—1 corresponds to the case of heating from above
The boundary conditions on the interface O include the
relations for the tangential stresses

aUlX &UZX 7]M (9T1

Ky 9z Pr ox '
dviy dvay MM T,

e = s =2 =0; (@
0z 0z Pr oy

the continuity of the velocity field

©)

V1= V2,

the continuity of the temperature field

T1=Ty; (6)

and the continuity of the heat flux normal components

(9T2
9z

(9T1

K= (7
HereM = afa,/n,x, is the Marangoni number.

The problem(1)—(7) for any choice of parameters has the =
solution

Ill. LINEAR STABILITY THEORY

The stability of the mechanical equilibrium can be inves-
tigated in the framework of linear stability theory. The
boundary value problerti)—(7) is linearized around the so-
lution (8). The solutions of the linearized problem are pre-
sented as a superposition of normal modes characterized by a

wave vectorl2=(kx,ky) and a complex growth rate=A\,
+i)\i .

[31(2),91(2),T1(2),02(2),P2(2), T2(2)]

X explikyx+ikyy+\t), 9
where subsequently the tilde will be omitted.
Since the problem is isotropic, the growth ratelepends

only on the wave vector modulis= || but not on its direc-
tion. That is why it is sufficient to consider only two-

dimensional disturbances wikh= (k,0) which do not depend
on the coordinatg. Introducing the stream function distur-
bances

Umx: lpr’ny (m:l,z),

Uz~ — K¢

"where the prime stands fat/dz, and eliminating pressure

disturbances in the usual way, we obtain the following
boundary value problem:

—AD = —Cy@? Y+ ik Grby, Tpy, (10)

— KA m= DT (m=1,2), (11)

U= =T,=0 for z=1, (12

Yr=1hy=T,=0 for z=—a, (13
nM

Y — Ph— Tl—O for z=0, (14

1=93, (15

1=1,=0, (16)

T1=T,, 17

kT1=T5, (18

whereD=d?/dZ2—k?, A;=dTy/dz=—s/(1+ ka), andA,
dTO/dZ——SK/(1+ xa) are the dimensionless tempera-
ture gradients.
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TABLE |. Parameters oh-octane (n=1) and methanolra=2).

m Vi (M?9) 7 (kgim9 Km (W/mK) Xm (M?/9) Bm (IK)
1 8.0x107” 5.62<10°4 1.50x 1071 1.02x10°7 1.05x 1073
2 7.0x1077 5.51x 1074 2.15x10° 1 1.09x 1077 1.09x 1073

The mechanical equilibrium stat€8) is unstable if Marangoni number for the oscillatory instability has a mini-
Re\(k)>0 for a certain value ok. mum M =1.76x 10* ata~2.75.
Both monotonic and oscillatory instabilities may occur in
a two-layer system. The stability boundary with respect to
monotonic disturbances can be found analyticg®y
Later on, we deal with the systemoctane—methanol, (Gr>0)
which is an example of a physical system where the two-
layer longitudinal oscillations have been predicted by heating [N the case of heating from beloveX 0), the combined
from above 6=—1) (see[8]). The physical parameters of action of the thermocapillary and buoyancy instability
the system are given in Tablg9]; the ratios of the param- mechanisms leads to a decrease of the critical Marangoni
eters are as follows:v=1.14, =1.02, x=0.698, x number with the growth of Gfsee Fig. 4a)]. The point Gr
=0.934,8=0.963, and Pr7.84. =62.6, M=0 corresponds to the excitation of pure buoy-
ancy convection by heating from below. Note that the tran-
sition for the pure thermocapillary mechanism of instability
. , , to the pure buoyancy one is accompanied by a significant
First, let us discuss the case of pure thermocapillary CoNgrowth of the wave numbdisee Fig. 4b)].
vection (Glt 0) formerly studied in[8]. For t_he. ratio .qf In the case of heating from above<0), the buoyancy
layer thicknessesa=2a,=1.38, the monotonic instability effect prevents the onset of thermocapillary convection.
threshold(at k=k,=5.10) and the oscillatory instabilitat  Therefore, both monotoni ,, and oscillatoryM , instability
k=k,=1.94) coincide. _ _ o thresholds increase with Gr. It is remarkable that the growth
In the casea>a,, the oscillatory instability is the most of the oscillatory instability threshold is faster than that of
“dangerous” one. A typical neutral curve is shown in Fig. 2. the monotonic instability thresholfsee Fig. %)]. For a
One can see that a monotonic instabilisplid line) occurs  —1 g M =M ,~54 800 when G 150. The dependences of
for s>0 (by heating from below ask<ky, and fors<O  the corresponding critical value numbeks, and k, are
(by heating from aboveask>kg; ky=3.95. The absence of ghown in Fig. %b).
the monotonic instability in the long-wave regiér<ky by
heating from above is a condition favorable for the appear-

B. Onset of combined thermocapillary-buoyancy convection

A. Pure thermocapillary convection

ance of the oscillatory instability. Fos=1.6, the critical M
Marangoni numbeM .= 2.715x 10* for the oscillatory insta-
bility corresponds td.= 1.75. There exists a codimension-2 80000 |- »
point (k, ,sM,) where the frequency of the oscillations
tends to zero, and the oscillatory neutral cu(dashed ling
terminates in the monotonic one.
In Fig. 3, the dependences of the critical parameters 40000 L
(M¢,k;) on the ratio of thicknessea are shown for both
oscillatory and monotonic instabilities. Note that the critical N ; _
. — -
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FIG. 3. The dependences of the critical paramebdg (K.) on
FIG. 2. (a) Neutral stability curves an¢b) dependence of the the ratio of thicknessea for oscillatory (lines 1) and monotonic
oscillations frequency on the wave numbar: 1.6. (lines 2 instabilities.
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C. Deformational instability mode
The results given above were obtained under the assump- ; :

tion that the interface separating the fluids ig.fldere we 0 100 200 Gr
discuss the conditions when that assumption is valid. .

It is known that the interfacial deformation can lead to the . F!G- 5- The dependences of the critical paramelég () on
appearance of an additional long-wave stationary instability"¢ Grashof number Gr for oscillatorffines 1) and monotonic
mode. The threshold of the deformational instability is deter—(IIneS 2 instabilities (heating from above

mined by the formuldsee[2], (2.7 . . :
y dseel2], (2.79] First, let us consider the appearance of nondeformational

2 P(1+ pa)(1+«a)?a modes. As shown in Sec. Il B, the critical parameter is the
M=sGr,é 31t a)(1-pad) (19 ratio
Gr_ Bipix
where _ 2 _PiPixr o
3 K M ia ga;.
=gt s=2 20
fa= i T py (20 If K is less tharK, , which corresponds to the poiM,

=M,,, the oscillatory instability is predicted, while in the
The influence of buoyancy on the deformational mode is a&aseK>K, one expects the appearance of the monotonic
non-Boussinesq effect, because B6=Gr/Gr, is the small instability. Fora=1.6, we obtainK, =0.0027. Substituting
parameter used in the derivation of the Boussinesq approxthe parameters of the-octane—methanol syste(see Table
mation. Thus, it has to be considered only together with othel), we find that the oscillatory instability is predicted when
non-Boussinesq corrections, otherwise one can get artifac@a§<0.115 cnt/s. In the case of normal gravitg=g,
(see[10]). Here we shall not consider the problem beyond=980 cm/é we obtain the conditiom;<0.024 cm, while in

the Boussinesq approximation. the caseg=gyx 10 %4, a;<2.4 cm.
Also, it is necessary to take into account the deforma-
D. Conditions for observation of the oscillatory instability tional mode. Substituting the parameters of tihectane—

As was shown above, there are three competing instabilit)';'_qemanm ;ysternisee Table )l into Eq. (19). and _taklng_g :
modes: the nondeformational oscillatory instability, the non-(; 1'6|’ wedﬁrtw)d thhat Fhe Ifong—wga)ve defr(])rmatmnal instability is
deformational stationary instability, and the deformational eveloped by heating from above when
instability. Let us discuss now the physical conditions for the -
observation of each type of instability. M=4.0 Gp=6.0x10aj, (21)
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where a; is measured in centimeters. Comparing E2fl) M7 dT,
with the linear stability threshold of the nondeformational ba=nd1+ 5~ for z=0, (27)
Sternling-Scriven instabilityM =2.715< 10*, we find that
the deformational instability will appear earlier than the non-
deformational one, if G 6800. aT, T,
In the caseg=g, that corresponds t@;<0.076 cm, Ti=Ts, Ko7 = 9z (28)

while in the casgy=gyx 10 * we geta;<1.6 cm.

Comparing the results obtained above, we find that in the The calculations were performed in a finite regios 0
caseg =g the oscillatory instability cannot be observed. In <[ with the following types of boundary conditions on the

the microgravity conditiong=gox 10" *, the oscillatory in-  [ateral boundariesia) periodic boundary conditions
stability is predicted in the “window” 1.6.a;<2.4 cm. For

smaller thicknesses of the top layer, the deformational insta- _ B
bility will appear, while for larger thicknesses of the top Yn(X+L.2)=9Yn(X.2),  Pm(X+L.2)= bm(X.2),
layer one gets a monotonic nondeformational instability.

Om(X+L,2) = 6(X,2), (29
IV. TWO-DIMENSIONAL SIMULATIONS OF NONLINEAR
CONVECTIVE REGIMES and (b) rigid heat-insulated boundaries
A weakly nonlinear bifurcation analysj8] reveals a sub-
critical instability of the equilibrium state with respect to W Ty

standing waves, i.e., the instability is not saturated on the m=x ~ ax 0 forx=0L, m=1.2. (30)

level of small-amplitude waves. We have performed nonlin-

ear simulations of nonstationary two-dimensional flows The boundary conditioné) correspond to spatially peri-
[vmy=0 (Mm=1,2); the fields of physical variables do not odic waves in a laterally infinite two-layer system, and are
depend ory]. In this case, we can introduce the stream func-used for comparison of the numerical results with those of

tion ¢, the linear theory developed for the infinite system. The
boundary conditiongb) correspond to a closed cavity.
A FI The boundary value problef22)—(30) was solved by the
Um= 5 Ums=— - (M= 1,2). finite-difference method. The equations and boundary condi-

tions were approximated on a uniform mesh using a second-
Eliminating the pressure and defining the vorticity as ~ ©rder approximation for the spatial coordinates. The nonlin-
ear equations were solved using an explicit scheme on a
rectangular uniform mesh 5656. The Poisson equation was
" ' solved by the iterative Liebman successive over-relaxation
X 9z method at each time step; the accuracy of the solution was
10°%. The Kuskova-Chudov formulag11] providing
second-order accuracy were used for approximation of the
vorticity on the solid boundaries.
The details of the numerical method can be found in the
book by Simanovskii and Nepomnyashdt2}.

Wmz IUmx

we can rewrite the boundary value probléf)—(7) in the
following form:

b Im Ibm_ Iim I _
at dz X X 0z

cmVZhm, (22
A. Pure thermocapillary convection

Vzlﬂm: — &m, (23) Periodic boundary conditions

Let us fix the ratio of layer thicknessas=1.6. According
to the results of the linear stability theok,=1.75, we per-
formed the nonlinear simulations of finite-amplitude oscilla-
(24)  tory flow regimes in a cell with the aspect ratio=3.6,
which contains exactly one period of the wave.
oy The prediction of the weakly nonlinear theory is justified.
Yy1=——=0, T,=0 for z=1, (250  We observed time-periodic standing waves. The characteris-
9z tic patterns of the stream function isolines and isotherms
during one-half of the period are shown in Fig. 6. The flow is

0T Ohm 0T Ith 0Ty A,
oz ox ox ez pry m (M=12,

APy symmetric with respect to the vertical lines=x., X,
1//2=E=0, T,=s for z=—a, (26) —x_=L/2:
P(X—X+,2,t) = — h(X+ —X,Z,t),
Py I
P1=9=0, ——=——, _ _ _
Jz daz T(X—X+,Z,1)=T(Xs+ —X,Z,1). (32
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1.49
0.746
0.00191
-0.742
149 ---
25

0 FIG. 6. Streamlinegal)—(d1)

and isotherms(a2—(d2) for the

symmetric time-periodic motion
in the region with L=3.6; M

=3.07x10%

The position of the vertical symmetry lines is determined6(c1)]. Finally, the latter vortices disappedfig. 6(d1)]. Af-
by the initial conditions. The typical structure contains twoter one-half of the time period, the structure is identical to
vortices of different signs per spatial period in each layerthe previous one, but it is shifted by one-half a spatial period:
[see Fig. 6al)]. The vortices move away from each other,

their intensity decreases, and four additional vortices appear P(X, 2,1+ 712) = (X + L12,Z,1),
[Fig. 6(b1)]. The intensity of the “new” vortices grows,
while that of the “old” vortices continues to decreafeig. T(X,z,t+7/2)=T(x+L/2,z1),
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FIG. 8. Streamlinega)—(d) for the asymmetric nonperiodic mo-
tion in the region withL=7.2; M =3.07x 10",

L/2 1
Slz(t):f deOle/IZ(X,Z,t). (32

0

The phase trajectories in the variableS,;(S;;) and
(S1,S2) confirm the symmetry31) of the oscillationdsee
Fig. 7(a)] and their periodicityfsee Fig. T)].

In accordance with the prediction of the weakly nonlinear
theory, the oscillations were also observed in the subcritical
region, where sufficiently small disturbances decay on the
background of the mechanical equilibrium state, while some
finite-amplitude disturbances generate a nondecaying oscilla-
tory regime.

In order to describe the spatial structure of the flow, we We also performed the calculations in a longer computa-

introduce the following integral variables characterizing thetional regionL=7.2. It turns out that the regular standing
intensity of the motion in the left and in the right halves of Wave is unstable with respect to the spatiotemporal modula-

the layers:

Sll(t):f

0

L 1
Srl(t):ledefodZ¢l(Xant)y

1
dxf dziq(X,2,1),
0

tion. We observed the same processes of creation and sup-
pression of vortices as in the case 3.6, but now they take
place in an asymmetric, irregular wésee Fig. 8.

Rigid heat-insulated lateral boundaries

The nonlinear simulations of the finite-amplitude convec-
tive regimes were also performed in a system with rigid heat-
insulated lateral boundarigsee the boundary conditions
(30)]; L=3.6.
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The oscillations turn out to be nonperiodic in time in the FIG. 10. The d q (Sy) in th ) hL
: . 10. The dependence & (S;) in the region wi
whole region where they have been observdti>2.65 —7.2: M=5.03% 10* Gr= 150,
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V. CONCLUSION

Linear and nonlinear simulations of oscillatory flow re-
gimes have been performed for the real two-layer system
n-octane—methanol. It is found that for a definite ratio of

Now let us consider the influence of buoyancy on nonlin-layer thicknesses the critical Marangoni number for the os-

ear thermocapillary oscillations. The simulations were percillatory instability has a minimum. .
The prediction of the weakly nonlinear thedi§] is jus-

ngﬁi%r’gj tl?fe”gigsf;?rr?ijrz%i?o:gggze; Egéﬁg Ei.zltri]gn Oft|f|ed: standing waves have been observed in the subcritical
L N g _ region. It was found that at GrO oscillations are never time

the _nonper|od|c oscnlguo_ns. T_he transn.lon from the ChaOt'Cperiodic in a sufficiently long computational region.

motion to regular oscillations is shown in Fig. 9. The phas€ The inclusion of buoyancy leads to regularization and fi-

trajectory after the transient period looks like a closed linengjly to the complete suppression of oscillations. The oscil-

(see Fig. 1D With increase of the Grashof number the os-latory instability can be observed only under microgravity

cillations are completely suppressed. conditions.

B. Influence of buoyancy on thermocapillary convection
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