
PHYSICAL REVIEW E 68, 026301 ~2003!
Influence of buoyancy on thermocapillary oscillations in a two-layer system
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The influence of buoyancy on thermocapillary oscillations was investigated. Nonlinear simulations of stand-
ing Marangoni waves in a real two-layer system of fluids were performed. Both the subcritical and supercritical
oscillatory regimes were studied. It was found that buoyancy leads to the regularization and suppression of
oscillations. The conditions for observation of different types of instability are discussed.
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I. INTRODUCTION

The thermocapillary effect often plays the dominant ro
in the dynamics and heat and mass transfer in systems
an interface, especially in the case of thin layers and un
microgravity conditions. It is the origin of specific surfac
tension-driven~Marangoni! instabilities@1#.

It is known that the stability problem for the mechanic
equilibrium state in a system with an interface is not se
adjoint ~see, e.g.,@2#!; thus an oscillatory instability is pos
sible. The Marangoni oscillatory instability in a two-laye
system was first discovered by Sternling and Scriven@3# in
the case of two semi-infinite layers. This case actually co
sponds to the limit of high wave numbersk. A detailed analy-
sis of the appearance of oscillatory Marangoni instabilities
the limit Mk2@1, whereM is the Marangoni number, wa
carried out in@4#.

In reality, the critical wave number of the instability
usually of the order of unity. In that case, the criteria for t
appearance of the oscillatory instability can be essenti
changed in comparison with the limit of high wave numbe
@5–7#.

An example of a physical system where two-layer os
lations have been predicted is the systemn-octane–methano
~see@8#!. A weakly nonlinear bifurcation analysis@8# reveals
a subcritical instability of the mechanical equilibrium sta
with respect to standing waves. In the case of a subcrit
instability, a weakly nonlinear analysis cannot give any p
diction concerning finite-amplitude motion.

In the present paper the influence of buoyancy on th
mocapillary oscillations is considered. It is shown that t
oscillations can be observed only under microgravity con
tions. Nonlinear simulations of spatially periodic standi
waves in then-octane–methanol system are performed. B
the subcritical and supercritical oscillatory regimes are inv
tigated.

The paper is organized as follows. In Sec. II, the ma
ematical formulation of the problem is presented. The lin
stability of the system is analyzed in Sec. III. Nonline
simulations of the finite-amplitude convective regimes
given in Sec. IV. Section V contains some concluding
marks.

II. FORMULATION OF THE PROBLEM

We consider a system of two horizontal layers of imm
cible viscous fluids with different physical properties~see
1063-651X/2003/68~2!/026301~8!/$20.00 68 0263
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Fig. 1!. The system is bounded from above and from bel
by two isothermic rigid plates kept at different constant te
peratures~the total temperature drop isu!. It is assumed that
the interfacial tensions decreases linearly with increasin
temperature:s5s02aT, wherea.0. The dependence o
the interfacial tension on the temperature can lead to
onset of the Marangoni instability.

It is known that there are two kinds of Marangoni inst
bility @1,2#. The first type of instability, which occurs in rela
tively thick layers, develops without a significant deform
tion of the interface. Another type of instability, which
observed in very thin layers, is caused by the interfacial
formation.

The Sternling-Scriven oscillatory instability studied in th
present paper belongs to the first type of instability. We w
disregard the deformation of the interface in our analys
The conditions when the deformational instability can be
nored are considered in Sec. III.

All variables referring to the top layer are marked by t
index 1, and the variables referring to the bottom layer
marked by the index 2. Let us use the following notation

r5r1 /r2 , n5n1 /n2 , h5h1 /h2 , k5k1 /k2 ,

x5x1 /x2 , b5b1 /b2 , a5a2 /a1 .

FIG. 1. Geometrical configuration of the two-layer system a
coordinate axes.
©2003 The American Physical Society01-1
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Hererm , nm , hm , km , xm , bm , andam are, respectively,
the density, kinematic and dynamic viscosities, heat cond
tivity, thermal diffusivity, thermal expansion coefficient, an
thickness of themth layer (m51,2). As the units of length
time, velocity, pressure, and temperature we choosea1 ,
a1

2/n1 , n1 /a1 , r1n1
2/a1

2, andu, respectively.
The complete nonlinear equations of convection for b

fluids have the following form@2#:

]vW m

]t
1~vW m•¹W !vW m52em¹W pm1cm¹2vW m1bm GrTmgW ,

]Tm

]t
1vW m•¹W Tm5

dm

Pr
¹2Tm , ~1!

¹W •vW m50.

Here, vW m5(vmx ,vmy ,vmz) is the velocity vector,Tm is
the temperature, andpm is the pressure in themth fluid; b1
5c15d15e151; c251/n, d251/x, e251/r; Gr
5gb1ua1

3/n1
2 is the Grashof number and Pr5n1 /x1 is the

Prandtl number for the liquid in layer 1. The conditions
the isothermic rigid horizontal boundaries are

v150, T150, for z51, ~2!

v250, T25s for z52a, ~3!

wheres51 corresponds to the case of heating from bel
ands521 corresponds to the case of heating from abov

The boundary conditions on the interfacez50 include the
relations for the tangential stresses

h
]v1x

]z
2

]v2x

]z
2

hM

Pr

]T1

]x
50,

h
]v1y

]z
2

]v2y

]z
2

hM

Pr

]T1

]y
50; ~4!

the continuity of the velocity field

v15v2 ; ~5!

the continuity of the temperature field

T15T2 ; ~6!

and the continuity of the heat flux normal components

k
]T1

]z
5

]T2

]z
. ~7!

HereM5aua1 /h1x1 is the Marangoni number.
The problem~1!–~7! for any choice of parameters has th

solution
02630
c-

h

.

vW 1
05vW 2

050W , p1
05p2

050, T1
052s

z21

11ka
,

T2
052s

kz21

11ka
~8!

corresponding to mechanical equilibrium.

III. LINEAR STABILITY THEORY

The stability of the mechanical equilibrium can be inve
tigated in the framework of linear stability theory. Th
boundary value problem~1!–~7! is linearized around the so
lution ~8!. The solutions of the linearized problem are pr
sented as a superposition of normal modes characterized
wave vectorkW5(kx ,ky) and a complex growth ratel5l r
1 il i :

@ ṽ1~z!,p̃1~z!,T̃1~z!,ṽ2~z!,p̃2~z!,T̃2~z!#

3exp~ ikxx1 ikyy1lt !, ~9!

where subsequently the tilde will be omitted.
Since the problem is isotropic, the growth ratel depends

only on the wave vector modulusk5ukW u but not on its direc-
tion. That is why it is sufficient to consider only two
dimensional disturbances withkW5(k,0) which do not depend
on the coordinatey. Introducing the stream function distu
bances

vmx5cm8 , vmz52 ikcm ~m51,2!,

where the prime stands ford/dz, and eliminating pressure
disturbances in the usual way, we obtain the followi
boundary value problem:

2lDcm52cmd2cm1 ik GrbmTm , ~10!

lTm2 ikAmcm5
dm

Pr
DTm ~m51,2!, ~11!

c15c185T150 for z51, ~12!

c25c285T250 for z52a, ~13!

hc192c292
ikhM

Pr
T150 for z50, ~14!

c185c28 , ~15!

c15c250, ~16!

T15T2 , ~17!

kT185T28 , ~18!

whereD5d2/dz22k2, A15dT1
0/dz52s/(11ka), andA2

5dT2
0/dz52sk/(11ka) are the dimensionless temper

ture gradients.
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TABLE I. Parameters ofn-octane (m51) and methanol (m52).

m nm ~m2/s! hm ~kg/m s! km ~W/m K! xm ~m2/s! bm ~l/K !

1 8.031027 5.6231024 1.5031021 1.0231027 1.0531023

2 7.031027 5.5131024 2.1531021 1.0931027 1.0931023
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The mechanical equilibrium state~8! is unstable if
Rel(k).0 for a certain value ofk.

Both monotonic and oscillatory instabilities may occur
a two-layer system. The stability boundary with respect
monotonic disturbances can be found analytically@2#.

Later on, we deal with the systemn-octane–methanol
which is an example of a physical system where the tw
layer longitudinal oscillations have been predicted by hea
from above (s521) ~see@8#!. The physical parameters o
the system are given in Table I@9#; the ratios of the param
eters are as follows:n51.14, h51.02, k50.698, x
50.934,b50.963, and Pr57.84.

A. Pure thermocapillary convection

First, let us discuss the case of pure thermocapillary c
vection (Gr50) formerly studied in@8#. For the ratio of
layer thicknessesa5a051.38, the monotonic instability
threshold~at k5km55.10) and the oscillatory instability~at
k5ko51.94) coincide.

In the casea.a0 , the oscillatory instability is the mos
‘‘dangerous’’ one. A typical neutral curve is shown in Fig.
One can see that a monotonic instability~solid line! occurs
for s.0 ~by heating from below!, as k,kd , and for s,0
~by heating from above!, ask.kd ; kd'3.95. The absence o
the monotonic instability in the long-wave regionk,kd by
heating from above is a condition favorable for the appe
ance of the oscillatory instability. Fora51.6, the critical
Marangoni numberMc52.7153104 for the oscillatory insta-
bility corresponds tokc51.75. There exists a codimension
point (k* ,sM* ) where the frequency of the oscillation
tends to zero, and the oscillatory neutral curve~dashed line!
terminates in the monotonic one.

In Fig. 3, the dependences of the critical paramet
(Mc ,kc) on the ratio of thicknessesa are shown for both
oscillatory and monotonic instabilities. Note that the critic

FIG. 2. ~a! Neutral stability curves and~b! dependence of the
oscillations frequency on the wave number;a51.6.
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Marangoni number for the oscillatory instability has a min
mum Mc51.763104 at a'2.75.

B. Onset of combined thermocapillary-buoyancy convection
„GrÌ0…

In the case of heating from below (s.0), the combined
action of the thermocapillary and buoyancy instabil
mechanisms leads to a decrease of the critical Marang
number with the growth of Gr@see Fig. 4~a!#. The point Gr
562.6, M50 corresponds to the excitation of pure buo
ancy convection by heating from below. Note that the tra
sition for the pure thermocapillary mechanism of instabil
to the pure buoyancy one is accompanied by a signific
growth of the wave number@see Fig. 4~b!#.

In the case of heating from above (s,0), the buoyancy
effect prevents the onset of thermocapillary convecti
Therefore, both monotonicMm and oscillatoryMo instability
thresholds increase with Gr. It is remarkable that the grow
of the oscillatory instability threshold is faster than that
the monotonic instability threshold@see Fig. 5~a!#. For a
51.6,Mo5Mm'54 800 when Gr'150. The dependences o
the corresponding critical value numberskm and ko are
shown in Fig. 5~b!.

FIG. 3. The dependences of the critical parameter (Mc ,kc) on
the ratio of thicknessesa for oscillatory ~lines 1! and monotonic
~lines 2! instabilities.
1-3
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C. Deformational instability mode

The results given above were obtained under the assu
tion that the interface separating the fluids is fla`t. Here we
discuss the conditions when that assumption is valid.

It is known that the interfacial deformation can lead to t
appearance of an additional long-wave stationary instab
mode. The threshold of the deformational instability is det
mined by the formula@see@2#, ~2.75!#

M5s Grad
2 Pr~11ha!~11ka!2a

3k~11a!~12ha2!
, ~19!

where

Gra5
ga1

3

n1
2 , d5

r2

r1
21. ~20!

The influence of buoyancy on the deformational mode
non-Boussinesq effect, becausee5bu5Gr/Gra is the small
parameter used in the derivation of the Boussinesq appr
mation. Thus, it has to be considered only together with ot
non-Boussinesq corrections, otherwise one can get artif
~see@10#!. Here we shall not consider the problem beyo
the Boussinesq approximation.

D. Conditions for observation of the oscillatory instability

As was shown above, there are three competing instab
modes: the nondeformational oscillatory instability, the no
deformational stationary instability, and the deformation
instability. Let us discuss now the physical conditions for t
observation of each type of instability.

FIG. 4. The dependences of the critical parameter (Mc ,kc) on
the Grashof number Gr~heating from below!.
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First, let us consider the appearance of nondeformatio
modes. As shown in Sec. III B, the critical parameter is t
ratio

K5
Gr

M
5

b1r1x1

n1a
ga1

2.

If K is less thanK* , which corresponds to the pointMo
5Mm , the oscillatory instability is predicted, while in th
caseK.K* one expects the appearance of the monoto
instability. Fora51.6, we obtainK* 50.0027. Substituting
the parameters of then-octane–methanol system~see Table
I!, we find that the oscillatory instability is predicted whe
ga1

2,0.115 cm4/s. In the case of normal gravityg5g0

5980 cm/s2 we obtain the conditiona1,0.024 cm, while in
the caseg5g031024, a1,2.4 cm.

Also, it is necessary to take into account the deform
tional mode. Substituting the parameters of then-octane–
methanol system~see Table I! into Eq. ~19! and takinga
51.6, we find that the long-wave deformational instability
developed by heating from above when

M>4.0 Gra56.03107a1
3, ~21!

FIG. 5. The dependences of the critical parameter (Mc ,kc) on
the Grashof number Gr for oscillatory~lines 1! and monotonic
~lines 2! instabilities~heating from above!.
1-4
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where a1 is measured in centimeters. Comparing Eq.~21!
with the linear stability threshold of the nondeformation
Sternling-Scriven instability,M52.7153104, we find that
the deformational instability will appear earlier than the no
deformational one, if Gra,6800.

In the caseg5g0 that corresponds toa1,0.076 cm,
while in the caseg5g031024 we geta1,1.6 cm.

Comparing the results obtained above, we find that in
caseg5g0 the oscillatory instability cannot be observed.
the microgravity conditionsg5g031024, the oscillatory in-
stability is predicted in the ‘‘window’’ 1.6,a1,2.4 cm. For
smaller thicknesses of the top layer, the deformational in
bility will appear, while for larger thicknesses of the to
layer one gets a monotonic nondeformational instability.

IV. TWO-DIMENSIONAL SIMULATIONS OF NONLINEAR
CONVECTIVE REGIMES

A weakly nonlinear bifurcation analysis@8# reveals a sub-
critical instability of the equilibrium state with respect
standing waves, i.e., the instability is not saturated on
level of small-amplitude waves. We have performed non
ear simulations of nonstationary two-dimensional flo
@vmy50 (m51,2); the fields of physical variables do n
depend ony#. In this case, we can introduce the stream fu
tion c,

vmx5
]cm

]z
, vmz52

]cm

]x
~m51,2!.

Eliminating the pressure and defining the vorticity as

fm5
]vmz

]x
2

]vmx

]z
,

we can rewrite the boundary value problem~1!–~7! in the
following form:

]fm

]t
1

]cm

]z

]fm

]x
2

]cm

]x

]fm

]z
5cm¹2fm , ~22!

¹2cm52fm , ~23!

]Tm

]t
1

]cm

]z

]Tm

]x
2

]cm

]x

]Tm

]z
5

dm

Pr
¹2Tm ~m51,2!,

~24!

c15
]c1

]z
50, T150 for z51, ~25!

c25
]c2

]z
50, T25s for z52a, ~26!

c15c250,
]c1

]z
5

]c2

]z
,

02630
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f25hf11
Mh

Pr

]T1

]x
for z50, ~27!

T15T2 , k
]T1

]z
5

]T2

]z
. ~28!

The calculations were performed in a finite region 0,x
,L with the following types of boundary conditions on th
lateral boundaries:~a! periodic boundary conditions

cm~x1L,z!5cm~x,z!, fm~x1L,z!5fm~x,z!,

um~x1L,z!5um~x,z!, ~29!

and ~b! rigid heat-insulated boundaries

cm5
]cm

]x
5

]Tm

]x
50 for x50,L, m51,2. ~30!

The boundary conditions~a! correspond to spatially peri
odic waves in a laterally infinite two-layer system, and a
used for comparison of the numerical results with those
the linear theory developed for the infinite system. T
boundary conditions~b! correspond to a closed cavity.

The boundary value problem~22!–~30! was solved by the
finite-difference method. The equations and boundary con
tions were approximated on a uniform mesh using a seco
order approximation for the spatial coordinates. The non
ear equations were solved using an explicit scheme o
rectangular uniform mesh 56356. The Poisson equation wa
solved by the iterative Liebman successive over-relaxa
method at each time step; the accuracy of the solution
1025. The Kuskova-Chudov formulas@11# providing
second-order accuracy were used for approximation of
vorticity on the solid boundaries.

The details of the numerical method can be found in
book by Simanovskii and Nepomnyashchy@2#.

A. Pure thermocapillary convection

Periodic boundary conditions

Let us fix the ratio of layer thicknessesa51.6. According
to the results of the linear stability theory,kc51.75, we per-
formed the nonlinear simulations of finite-amplitude oscil
tory flow regimes in a cell with the aspect ratioL53.6,
which contains exactly one period of the wave.

The prediction of the weakly nonlinear theory is justifie
We observed time-periodic standing waves. The characte
tic patterns of the stream function isolines and isother
during one-half of the period are shown in Fig. 6. The flow
symmetric with respect to the vertical linesx5x6 , x1

2x25L/2:

c~x2x6 ,z,t !52c~x62x,z,t !,

T~x2x6 ,z,t !5T~x62x,z,t !. ~31!
1-5
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FIG. 6. Streamlines~a1!–~d1!
and isotherms~a2!–~d2! for the
symmetric time-periodic motion
in the region with L53.6; M
53.073104.
ed
o

ye
r,
e

,

to
od:
The position of the vertical symmetry lines is determin
by the initial conditions. The typical structure contains tw
vortices of different signs per spatial period in each la
@see Fig. 6~a1!#. The vortices move away from each othe
their intensity decreases, and four additional vortices app
@Fig. 6~b1!#. The intensity of the ‘‘new’’ vortices grows
while that of the ‘‘old’’ vortices continues to decrease@Fig.
02630
r

ar

6~c1!#. Finally, the latter vortices disappear@Fig. 6~d1!#. Af-
ter one-half of the time period, the structure is identical
the previous one, but it is shifted by one-half a spatial peri

c~x,z,t1t/2!5c~x1L/2,z,t !,

T~x,z,t1t/2!5T~x1L/2,z,t !,
1-6
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wheret is the time period.
In order to describe the spatial structure of the flow,

introduce the following integral variables characterizing t
intensity of the motion in the left and in the right halves
the layers:

Sl1~ t !5E
0

L/2

dxE
0

1

dzc1~x,z,t !,

Sr1~ t !5E
L/2

L

dxE
0

1

dzc1~x,z,t !,

FIG. 7. Phase diagrams of the oscillatory motion;M53.07
3104.
02630
e

Sl2~ t !5E
0

L/2

dxE
0

1

dzc2~x,z,t !. ~32!

The phase trajectories in the variables (Sl1 ,Sr1) and
(Sl1 ,Sl2) confirm the symmetry~31! of the oscillations@see
Fig. 7~a!# and their periodicity@see Fig. 7~b!#.

In accordance with the prediction of the weakly nonline
theory, the oscillations were also observed in the subcrit
region, where sufficiently small disturbances decay on
background of the mechanical equilibrium state, while so
finite-amplitude disturbances generate a nondecaying osc
tory regime.

We also performed the calculations in a longer compu
tional regionL57.2. It turns out that the regular standin
wave is unstable with respect to the spatiotemporal mod
tion. We observed the same processes of creation and
pression of vortices as in the caseL53.6, but now they take
place in an asymmetric, irregular way~see Fig. 8!.

Rigid heat-insulated lateral boundaries

The nonlinear simulations of the finite-amplitude conve
tive regimes were also performed in a system with rigid he
insulated lateral boundaries@see the boundary condition
~30!#; L53.6.

FIG. 8. Streamlines~a!–~d! for the asymmetric nonperiodic mo
tion in the region withL57.2; M53.073104.
1-7
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The oscillations turn out to be nonperiodic in time in t
whole region where they have been observed,M.2.65
3104.

B. Influence of buoyancy on thermocapillary convection

Now let us consider the influence of buoyancy on nonl
ear thermocapillary oscillations. The simulations were p
formed with periodic lateral boundaries@see Eq.~29!#. The
inclusion of the Grashof number leads to regularization
the nonperiodic oscillations. The transition from the chao
motion to regular oscillations is shown in Fig. 9. The pha
trajectory after the transient period looks like a closed l
~see Fig. 10!. With increase of the Grashof number the o
cillations are completely suppressed.

FIG. 9. The dependence ofSl1,2(t) in the region withL57.2;
M55.033104; Gr5150.
-

ys
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V. CONCLUSION

Linear and nonlinear simulations of oscillatory flow r
gimes have been performed for the real two-layer sys
n-octane–methanol. It is found that for a definite ratio
layer thicknesses the critical Marangoni number for the
cillatory instability has a minimum.

The prediction of the weakly nonlinear theory@8# is jus-
tified: standing waves have been observed in the subcri
region. It was found that at Gr50 oscillations are never time
periodic in a sufficiently long computational region.

The inclusion of buoyancy leads to regularization and
nally to the complete suppression of oscillations. The os
latory instability can be observed only under micrograv
conditions.

FIG. 10. The dependence ofSr1(Sl1) in the region with L
57.2; M55.033104; Gr5150.
ev.
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